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ABSTRACT: In tensile stretching, many polymers undergo
strain localization. The geometrical form of the localization
can take the form of either a shear band or an approximately
symmetric neck. We present a constitutive model of the early
stages of deformation that predicts which form the localiza-
tion will take. The model consists of an Eyring process acting
with a Gaussian network that is implemented numerically. A
Levy-Mises flow rule associated with the Eyring process has
a tendency to produce shear bands. A relatively stiff Gaus-
sian network is used in a model of polycarbonate that

ensures that most of the strain is taken up by the Eyring pro-
cess, resulting in shear banding. In contrast, a relatively soft
Gaussian network is used in a model of polyethylene, which
takes up the greater part of the strain, resulting in a neck. The
predictions are compared with experiments. For polyethyl-
ene, a two-Eyring-process model is introduced for better
accuracy. © 2007 Wiley Periodicals, Inc. ] Appl Polym Sci 106:
1095-1105, 2007
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INTRODUCTION

In some forms of polymer processing, such as ther-
moforming, film blowing, and die drawing, large
strains are applied in the solid phase. For the accu-
rate numerical modeling of these processes, the me-
chanical behavior of the polymer must be under-
stood in terms of its constitutive equation, which has
to encompass nonlinearity and strain-rate depend-
ence. Ideally, the constitutive equation should func-
tion under all conditions, including those obtained at
instabilities: high strain rates and extreme strain
localization. This regime presents a rigorous chal-
lenge to the constitutive model, and this considera-
tion has led us to study the problem of instability
over a range of polymer materials.

In tensile stretching, many polymers extend non-
uniformly after an initial stage of homogeneous de-
formation. The onset of nonuniformity is associated
with a load drop. The dynamics of the process are
well understood in terms of the underlying constitu-
tive behavior of the material, which must be such
that the uniaxial nominal stress—strain curve reaches
a maximum in stress. Then, in a tensile specimen, a
large strain can coexist with a small strain, and fur-
thermore, this inhomogeneous state may be associ-
ated with lower strain energy than the correspond-
ing uniform state, resulting in a neck or other form
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of strain localization. However, strain localization is
accompanied by a local increase in the strain rate. In
materials for which the stress depends on the rate of
strain, an increase in stress would accompany the
local increase in the strain rate, increase the strain
energy associated with the nonuniform state, and
thus favor homogeneous deformation. Sweeney
et al.' described in detail how these competing
effects affect the necking process in polymers.

Aside from the criterion that governs the existence
or otherwise of an instability, there is the question of
what geometric form it will take. In the uniaxial
stretching of plane tensile specimens, there are two
possibilities: a neck, symmetric about the specimen
axis, and a shear band, an area of localization at an
oblique angle to the axis. In this article, we present
finite element models of both kinds of instability
that are based on the same form of a constitutive
equation. The models are compared with experimen-
tal results for shear-banding polycarbonate and
necking polyethylene, and we show that the same
underlying constitutive equation gives a unified rep-
resentation of both forms of instability.

Previous work on shear bands

Shear bands have been recognized for many years as
the preferred deformation mode for yielding ductile
metals when the geometrical conditions are favor-
able. Figure 1 shows the general arrangement of a
shear band occurring under the conditions of uniax-
ial tension. The lateral displacement of the specimen
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Figure 1 Tensile specimen with a shear band in the
observed location.

ends is an essential component of this deformation,
and the band itself consists of thinned material.
Thus, in the terminology of Bowden,” our deforma-
tion is a combination of an inclined neck (the
thinned region) and shear band (in which there is
lateral displacement between the specimen ends but
no thinning, with shear deformation only occurring
along the band); we continue to refer to our com-
bined deformation loosely as a shear band. The
angle of inclination of the band to the tensile axis
under these plane stress conditions has been calcu-
lated as tan_l(\/Z), that is, 54.74° for an incompressi-
ble material, on the basis that the band lies along the
direction of zero elongational strain by Nadai.’
Thomas® criticized this analysis for a lack of rigor
and produced exact solutions based on both the von
Mises and Tresca yield criteria. For both criteria, the
same result of tan_l(\/Z) was returned, although in
the case of Tresca, there was an additional result of
tan~'(,/2/./3). We are now satisfied that this latter
result is nonphysical, as it corresponds to a tensile
stress insufficient to cause yielding. Thomas® also
predicted inclination angles for compressible materi-
als, giving results as a function of Poisson’s ratio
and using an analysis that included the condition of
zero elongational strain. This analysis also appa-
rently produced more than one band angle for each
condition, but we are satisfied that only one of them
corresponds to both a sufficiently high stress and to
the assumed plane stress conditions.

Shear bands in polglmers have been reported for
many years. Bauwens” measured the angles of bands
in tensile specimens of rigid poly(vinyl chloride) and
found them to be consistent with the prediction of
55° of Nadai® and Thomas.* Observations of the phe-
nomenon specifically in polycarbonate also have a
long history (e.g., Higuchi and Hyakutake” and Wu
and Turner®). The tensile stress associated with the
initiation of a macroscopic band is reproducible.
Stress concentrations cause microshear bands to
occur locally at a lower overall stress than that asso-
ciated with the macroscopic band.*”

More recently, the finite element method has been
applied to investigate in detail the relationship
between the material constitutive equation and the
band geometry. Of particular relevance is the work
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of Lu and Ravi-Chandar,” who modeled the stretch-
ing of polycarbonate in uniaxial tension using a tri-
linear constitutive equation, which included no
strain rate dependence of stress but captured some
essential elements of the phenomenon. The assump-
tion of incompressibility was made for the postyield
behavior, and the modeled shear-band angles corre-
sponded to the Nadai/Thomas 55° prediction. Sim-
ple tensile boundary conditions were used, and the
localization of stress required for the initiation of the
shear band was created by a local material inhomo-
geneity. Wu and van der Giessen'®'" used more
physically realistic constitutive equations to make fi-
nite element models of shear bands in polycarbonate
and polystyrene. They constructed their constitutive
model by combining Argon’s mechanism of plastic
flow'? with an elastic response based on their full
network polymer chain model,'* an approach similar
in spirit to that of Arruda and Boyce,14 who used
the eight-chain network'® in place of the full net-
work. The constitutive model of Wu and van der
Giessen was implemented in finite element analyses
and applied to shear bands occurring under condi-
tions of applied compressive and shear strains.

Previous work on necks

Shear banding can be suppressed in glassy polymers
by the selection of particular forms of specimen ge-
ometry, such as axisymmetry,'®"® so that the inho-
mogeneity in strain is in the form of a symmetric
neck. However, in some polymers, symmetric neck-
ing is invariably the observed form of inhomogene-
ity, independent of the specimen geometry. Thus,
Brooks et al.,!” Gaucher-Miri et al.,* Sweeney
et al.,*! and Unwin et al.?? observed symmetric necks
in plane tensile specimens of polyethylene. Polypro-
pylene exhibits similar macroscopic behavior, as
reported, for example, by Drozdov and Christian-
sen” and Sweeney et al.** The main distinguishing
feature between polymers that neck and those that
band appears to be that necking polymers undergo
larger strains before the start of the instability.
Recent work on multilayered poly(ethylene tereph-
thalate)/polycarbonate tapes by Ivan’kova et al.*
has suggested that an increased network density can
transform the deformation mechanism into a shear
band.

Necks in tensile specimens can be modeled suc-
cessfully with the finite element method together
with an appropriate constitutive equation. This has
been done both for polypropylene*'** and for poly-
ethylene.”® In all these cases, the constitutive equa-
tions have been based on an elastic network model,
with no flow rule and therefore no potential for
shear banding. Although this approach reflects the
observed behavior, there seems to be no fundamen-
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tal physical reason for the inclusion of a flow rule
for one class of polymer and its exclusion for
another. In this article, we adopt a unified approach.

Constitutive model

Because we are concerned with the modeling of only
the growth of the instability and are not considering
subsequent events in the stretching of the specimen,
a simple model is sufficient. For the majority of the
models considered here, a single Eyring process acts
in series with a Gaussian network, with the network
and Eyring process associated with an elastic defor-
mation gradient (G®) and a plastic deformation gra-
dient (GP), respectively. For the total deformation
gradient (G)

G = G°GP 1)

An incremental time-stepping approach is adopted.
Given G, we use polar decomposition to obtain the
total stretch (D) and rigid body rotation (R):

G =DR

Suppose at some point in the analysis that the plastic
stretch at the end of the previous time step is D},
ADP is the increment in the plastic stretch during
the current time step, and D°® is the elastic stretch.
Then, G is

G = D°ADPDER @)

where D¢, ADP, and Dg are symmetric tensors with
no associated rigid body rotations. D® and ADP are
collinear and share principal directions that are in
general different from those of Dj. We follow Bonet
and Wood?” and make the initial estimate of D¢, Dg,
by assuming that there is no additional plastic
strain:

=GR D}

For a given value of G, D® and ADP in eq. (2) are
derived via an iterative process to impose the condi-
tion that the stresses in the network and the Eyring
process are equal. Plane stress conditions are
assumed. The Gaussian network is assumed to be
incompressible, and the stress (o;) is given by the
constitutive equation:

o; = C[AM — (M) 7 (3)

where i is I or II; I and II are the principal directions
in the plane; and /; is the principal extension ratio,
which is equal to the diagonal entries of D® when
transformed along the principal directions. C defines
the stiffness of the network.
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We define the total stress tensor (6) and the stress
deviator (t) as follows:

T=06—Gl

where G is the mean stress [

(6)]. We further
define the octahedral shear stress as

Au\»—-

tr
1) as

According to the Eyring theory, the scalar plastic
strain rate (¢,) is related to ¢ and t by

ey = Aexp(V,G)sinh(V;1) 4)

where A, V,, and V; are material constants, the latter
two being proportional to the ressure and shear
activation volumes, respectively.”** ¢, is defined in
terms of the plastic velocity gradient (LP):

. /1
ePZ ELP'LP

LP is itself defined in terms of the plastic deforma-
tion gradient as

L? = DPDP!

To fully define LP, we acknowledge that it is collin-
ear with the stress and stress deviator and assume
that the material obeys the Levy-Mises flow rule.
Then, in principal directions, we have

W 0 0 1 fu 0 0
éf 0 7\.?1 / 7\,% 0 = ; 0 = 11 0
"\ o 0 My/My 0 0

()

where A[, A, and Aj; are the principal plastic exten-
sion ratios and 1y, 1y, and 1y are the principal stress
deviators. The plastic strain increment (ADF) in
eq. (2) is determined under the assumption that the
rate of strain is constant within the time step.

Although most of the material modeling here
makes use of the constitutive theory outlined in
eqgs. (1)—=(5), for a more accurate representation of
polyethylene, a combination consisting of two such
models acting in parallel is used. Distinguishing the
separate arms of this model by subscripts X and Y,
the separation of elastic and plastic deformations
requires two equations to replace eq. (1):

G = GXGX = GyGy (6)

Similarly, deformations and rotations are related as
in eq. (2):

Journal of Applied Polymer Science DOI 10.1002/app
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G = D{ADYD}R = DSAD) D}, R 7)

There is one Gaussian network in each arm of the
model, characterized by stiffnesses Cx and Cy and
giving principal stresses g;x and ¢;y in response to
principal extension ratios /;x and Ayt

oix = Cx(My — (Mxhx) ) iX = IX, X @)

Oy = Cy ()\‘12Y — (7\11/%111/)72) 1Yy = IY7 1104
where it is implicit that the principal directions IX,
IY, IIX, and IIY are in general different from one
another. The principal stresses correspond to stress
tensors in global directions (6x and 6y) for each arm,
with the total stress given by

6 = 06X + Gy ©)

Two Eyring processes, one for each arm, are charac-
terized by

épX = Ax exp(Vch_yX) Sinh(Verx) (10)
épy = Ay exp(V,yGy) sinh(Viyty)

Scalar strain rates é,x and é,y, mean stresses Gx and
Gy, and octahedral shear stresses tx and ty are
defined analogously to ¢é,, 6, and 7. Two flow rules
such as eq. (5) are used to specify the evolution of
plastic strains in response to the octahedral shear
stresses in each arm. The same numerical procedures
are used to obtain equilibrium within the X and Y
arms as in the single-arm model of egs. (1)-(5). We
refer to the theory of egs. (1)-(5) as the single-pro-
cess model and that of egs. (6)—(10) as the two-pro-
cess model. The latter is in effect a generalization, to
large strains and two dimensions, of the work of
Ward and Wilding.*

These models share kinship with the other poly-
mer constitutive equations that combine entropic
networks and viscous processes. In some cases,*®'*?!
the networks differ fundamentally from the Gaus-
sian network used here, in that they include a finite
chain extensibility limit. We have adopted the Gaus-
sian model for simplicity and because, in the experi-
mental work described here, the extensibility limit is
not approached. For the viscous process, the Argon
approach'? is sometimes adopted'*! as an alterna-
tive to the Eyring approach used here and else-
where.” The two theories of viscous flow are diffi-
cult to distinguish experimentally.

EXPERIMENTAL

We have compared the uniaxial tensile behaviors of
polycarbonate and polyethylene. The former was
Bayer Macrolon with a weight-average molecular

Journal of Applied Polymer Science DOI 10.1002/app
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Figure 2 Specimen dimensions in millimeters. Stretching
is along 1.

weight (M,,) in the range of 35,000-37,000 and a glass-
transition temperature of 148°C;* it was obtained in a
commercial sheet form 3 mm thick. The polyethylene
had M, ~ 206,000 and was supplied in the form of
granules. Sheets 1.4 mm thick were made through
compression molding at 160°C and quenching into
water at room temperature. For both materials, plane
tensile specimens were cut from the sheets with the ge-
ometry specified in Figure 2. Standard tensile grips
were used to hold the specimen ends. They were
stretched with an Instron testing machine incorporat-
ing an environmental chamber, which was operated at
100°C for the polyethylene specimens and at 130°C for
polycarbonate. We adopted as a standard a constant
testing speed of 1.667 mm /s, although additional tests
at half and double this speed were used to establish the
rate dependence of the stress.

In the case of polycarbonate, in almost all cases, a
shear band was initiated at one of the curved edges
and became dominant [Fig. 3(a)]. In a minority of
cases, a symmetric V-shaped pair of bands formed at
one end. In a yet smaller number of cases, shear bands
formed simultaneously at both ends. We conclude
that there was usually some degree of deviation of the
specimen and loading system from fourfold symme-
try, which provided the condition necessary for the
growth of a single shear band but was sometimes so
small that the symmetric V-shaped pair of bands or
bands at both ends were formed. Imperfection in the
specimen and misalignment of its axis with respect to
that of the testing machine are the obvious possible
mechanical sources of asymmetry. There is also the
likelihood that small temperature variations along the
specimen would have a significant effect under these
unstable conditions. The overall stress—deformation
behavior of the specimens is highly reproducible and
independent of the observed mode of deformation. In
Figure 4, we show a typical nominal stress-time
curve, which was formed from an average of 10
experiments under the standard conditions specified
previously. The stress maximum corresponds to the
onset of banding.
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(b)

Figure 3 (a) Shear band in polycarbonate at 130°C and
(b) neck in polyethylene at 100°C.

Optical microscopy of tested specimens has
revealed microshear bands in the specimen gauge
length, sometimes originating at the ends of cracks

35
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20 1 | |—0bserved

— Modelled

19

MNominal stress | MPa

10

O ¥
0 1 2

timels

Figure 4 Observed and modeled results for the polycar-
bonate tensile tests.
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(Fig. 5). From printed images, measurements of the
angles between associated microshear bands have
enabled us to estimate the angle between the shear
band and the tensile axis. Twenty-three such meas-
urements of the material outside the shear band give
a value of the angle to the tensile axis of 52.1 + 2.4°,
with the error corresponding to a 95% confidence
interval. This is just significantly less than the 54.74°
prediction for an incompressible material based on
the direction of zero normal strain and still less than
the value of 56.1° calculated on the same basis for a
material with a Poisson’s ratio of 0.45, a value
recently supported by experimentation.> Because
the microshear bands form at stress concentrations,
it is clear that they form at low macroscopic strains,
certainly much less than the strain corresponding to
the peak stress, when the macroscopic shear band
forms. Once formed, the microshear band will be
subject to further straining, which will tend to
decrease the angle that it makes with the loading
axis. We have calculated that a permanent strain of
4% is sufficient to change the angle from an initial
value of 56.1° to within the confidence interval asso-
ciated with the observations; this level of permanent
strain is within expectations.

The polyethylene specimens are drawn under ten-
sion into an approximately symmetric neck, as
shown in Figure 3(b). Figure 6 shows the evolution
of stress. Here we show a single typical curve; the
reproducibility is such that peak nominal stresses
differ by at most 4%. The stress begins by increasing

Figure 5 Optical micrograph of the specimen gauge
length surface after stretching at 130°C along the horizon-
tal direction. Microcracks and associated microshear bands
are visible. The angles between shear bands originating at
the same crack tip were used to estimate the angle of the
shear band to the straining direction. The bar corresponds
to a length of 500 pm.

Journal of Applied Polymer Science DOI 10.1002/app
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51 TABLE I
Model Parameters for Polycarbonate
44 C (MPa) A(s™h V, (MPa™) V, (MPa™)
s 385 20 x 107'® 2.343 0.141
=
w34 — Observed
E —— Single process Table 2
; Single process Table 3 Polycarbonate
E 24 Twio process Table 4
£ The greater challenge is posed by the shear-banding
14} polycarbonate material. The mechanical properties
i are specified in Table I. The value of the Gaussian
. .i! coefficient (C), 385 MPa, fits the observed initial

a 5 10 15 20 25
Extension / mm

Figure 6 Observed and modeled results for polyethylene
tensile tests. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

linearly, but around 3 s, the slope begins to decrease
and thereafter follows further linear development at
a shallower slope before reaching the stress maxi-
mum around 10 s. The slope change and stress max-
imum can be identified with separate Eyring proc-
esses, suggesting a model similar to that of Ward
and Wilding® in their work on polyethylene fibers
at room temperature.

Modeling

We have constructed a finite element model and
applied it to experiments with both materials. Both
materials are modeled with the constitutive relation
defined in eqs. (1)-(5), with parameters defined
appropriately for each material. Additionally, the
polyethylene is modeled with the more sophisticated
constitutive relation of egs. (6)—(10). The mesh repre-
senting the tensile specimens, consisting of plane
stress elements, is shown in Figure 7. The solutions
were obtained with ABAQUS Standard, incorporat-
ing the constitutive equation as a UMAT user-
defined subroutine.

-||'-'|-
T

T

T
Hifle— )

T

T

1
.

Figure 7 Finite element mesh for tensile specimens.
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slope of the stress—strain curve, but we note that it is
of the same order as the 440 MPa value that we
derive from the dynamic results of Govaert and Ter-
voort® for the testing temperature of 130°C. The
observed rate dependence of the peak stress was
used, via eq. (4), to fix the value of the combination
V, + J2V,. This is possible under the assumption
that the stress state is uniaxial, the hyperbolic sine
function can be approximated by the exponential,
and, at yield, the plastic strain rate is equal to the
applied strain rate. This last feature is essential to a
series model as proposed here.’® To separate V, and
V,, we have made use of estimations of the ratio Vp/
Vs based on the work of other investigators. On the
basis of the pressure dependence of the yield stress,
Nazarenko et al.'® proposed for polycarbonate V,/V
= 0.06, whereas Bauwens-Crowet and Bauwens®
proposed 0.075, while noting values in the range of
0.05-0.072 obtained by other workers. During a com-
parison of ratios obtained by different authors, it
becomes apparent that there are alternative values of
Vs depending on the precise definition of the driving
stress in eq. (4). Although here we use the octahedral
shear stress +/t-t/3, other workers have used the
effective stress /7 -t/2. Examples of the latter are
Govaert et al.,”” who used for polycarbonate a value
of V,/V; that corresponds to 0.06 according to the
definitions of this article. The ratio 0.06 is supported
by experimental evidence and falls within the range
of accepted values, and we have adopted it here.
The separated values of V,, and V; are given in Ta-
ble I. The value of A is obtained through fitting to the
observed maximum stress level in the tensile tests.
The aforementioned mechanical properties invaria-
bly result in shear-band predictions in tensile
stretching. This is true both with the finite element
mesh of Figure 7 (which is the basis of all the model-
ing results discussed here) and with less dense
meshes having gauge lengths comprising a 30 X 12
rectangular array of elements, rather than this 34 X
20 array. However, the modeled position of the band
will not in general be as observed experimentally, as
it depends on the precise boundary conditions
employed. In all cases, there is a condition of zero
lateral strain applied to both boundaries, L and R
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Figure 8 (a) Shear bands under symmetrical conditions,
(b) a single shear band centrally located, and (c) bounda-
ries rotating about offset centers.

(see Fig. 8), to simulate the action of tensile grips.
Simple displacement boundary conditions, in which,
in addition, boundaries L and R are both restrained
laterally and axially separated, [see Fig. 8(a)] result
in a symmetric solution with a pair of bands at the
center of the specimen in an X formation. We know
that the existence of a single band, as observed
experimentally, requires that there be relative lateral
movement between the specimen ends. There must
be some initial asymmetry in the specimen or its
setup to determine the sense of the larger asymme-
try that develops as the band forms; this applies
both to the model and to the real specimen. In prac-
tice, the most plausible source of asymmetry would
be imperfections in the specimen (e.g.,, machining
defects around the curved boundaries), off-axis load-
ing, or temperature variations. We have explored
combinations of the first two effects, bearing in mind
that the typical experimental observation is that of a
band growing from near one of the points C in Fig-
ure 8(a). The conditions are as follows:

1. We introduce a small flaw in the form of a 0.15-
mm inward displacement of a node on the
gauge length boundary near point C [see Fig.
8(a)]. There is no off-axis loading. We allow lat-
eral (2 direction) movement of boundary L,
while fixing it in the 1 direction and moving R

1101

along the 1 axis only. Then, a single band is
formed, but at the center of the specimen [see
Fig. 8(b)] rather than in the position observed.
Further increasing the size of the flaw can result
in the band originating from point C as
observed experimentally, but an unrealistically
large flaw (0.3 mm) is required.

2. A detailed consideration of the experimental
loading system leads to the conclusion that the
sideways motion of the specimen end is caused
by rotation of the loading member about a pin
joint, rather than displacement of the boundary
purely along the 2 direction. In fact, both bounda-
ries are potentially subject to this rotational con-
dition. We have created conditions under which
each boundary (L and R) is allowed to rotate
about a point a fixed distance (r) from it, and the
deformation is induced by the separation of the
centers of rotations along the 1 axis. We have
introduced asymmetry in the form of a realistic
degree of offset loading by placing one of the cen-
ters of rotation a small distance (J) from the spec-
imen axis [see Fig. 8(c)]. With the rotation angles
assumed to be small, linear equations linking the
boundary nodal displacements are used to pro-
duce the required conditions, which are illus-
trated in Figure 8(c). The radii of rotation are
determined by the geometry of the experimental
loading system. With no flaw in the specimen, a
single shear band is predicted at its center.

3. This is the same as condition 2, but with the
addition of a flaw in the specimen at C. The
shear-band positions are then as observed, pro-
vided that the flaw is 0.13 mm or larger. This is
not a practically unrealistic flaw size, and as
noted in the Experimental section, some asym-
metry may be a result of temperature variation.
We are not attempting to make a precise model
of a real material flaw; the purpose of our
model flaw is to provoke the observed pattern
of strain localization. We accept that in reality
some of the asymmetry may be of thermal
rather than mechanical origin.

When using condition 3 with an offset loading of &
= 0.8 mm, a radius of rotation of ¥ = 140 mm, the prop-
erties in Table I, and an extension rate corresponding
to the experimental value of 1.667 mm /s, we obtain the
shear-banded shape shown in Figure 9. The angle of
the shear band matches the theoretical value for incom-
pressible materials discussed previously. The pre-
dicted nominal stress-time curve is compared with the
experiment in Figure 4. The nominal stress is modeled
well up to the peak value, but the drop in load is
delayed by about 1 s in comparison with the experi-
ment. The delay corresponds to the time required for
the shear band to fully form after the peak load has

Journal of Applied Polymer Science DOI 10.1002/app
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Figure 9 Finite element model of a tensile polycarbonate
specimen with the material properties of Table I, showing
the contours of the maximum principal true strain after 1.9 s.
[Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

been reached; in the experiments, the band forms in
much less than 1 s. The parameters defining the Eyring
process were obtained from the magnitude and rate
dependence of the peak stress and so correspond to a
uniform specimen strain and material at small strains.
The material in the band is at strains of 40% or more
and so may have different properties. The concept that
the material will flow more freely after yield has been
supported by the work of Zhou et al.”® and Nanzai
etal.,”” who suggested that polycarbonate, on yielding,
transforms temporarily from a glassy state into a rub-
bery state in which it flows more freely. Such complex
behavior would not be captured by our simple model.
As it stands, our model is a useful tool for exploring
the development or otherwise of shear bands, although
we accept that the speed of band development is not
well modeled.

Because the degree of offset varies randomly
between experiments while producing reproducible
load—extension results, we require that the model
results be insensitive to 8, provided that it lies
within realistic limits. We have verified that using a
value of 8 = 1.6 mm rather than 0.8 mm gives essen-
tially indistinguishable predictions. We judge that
the 0.8-mm offset is a reasonable expectation, given
the visual alignment method used.

Polyethylene

Here the loading behavior, as illustrated in Figure 6,
is more complex than that for polycarbonate, with

TABLE II
Model Parameters for Polyethylene:
The Single-Process Model

Figure 10 Finite element model of a tensile polyethylene
specimen with the material properties of Table II, showing
the contours of the maximum principal true strain after
11.4 s. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

two discernible slopes. The single-process model of
egs. (1)-(5) will predict only one slope value. How-
ever, we can make use of this model to approximate
the behavior of polyethylene and show how the de-
formation behavior with respect to necking or shear
banding is influenced.

For the polyethylene modeling, we have main-
tained the boundary and flaw conditions of condi-
tion 3. We have also retained the value V,/V;
= 0.06. The values of V; and A are selected prag-
matically to fit the observed behavior and may not
be unique in this respect. In Table II, we have cho-
sen a value of C so that the initial slope of the
stress—deformation curve is matched and chosen
other parameter values to give the correct yield
stress, which then occurs at too early a time. This is
shown in Figure 6. The corresponding deformation
field is shown in Figure 10, using the mesh of Fig-
ure 7 and the boundary conditions and flaw size as
specified in condition 3. Given geometry and bound-
ary conditions identical to those for the polycarbon-
ate in Figure 9, it is clear that symmetric necking is
now the dominant form of instability.

In Table III, the value of C is lower than in that
Table 1II, so the yielding occurs at a realistic time, as
shown in Figure 6. With geometry and boundary
conditions identical to those for the previous case,
the corresponding deformation field shown in Figure
11 again features necking as the form of instability.
In this case, the neck is localized near the edge flaw.

For completeness, we introduce the more realis-
tic two-process model with the material parameters

TABLE III
Model Parameters for Polyethylene:
The Single-Process Model

C (MPa) A(s™h Vs, (MPa™ ! V, (MPa™)

C (MPa) A V, (MPa™ ) V, (MPa™")

11.9 5.6 X 107° 3.08 0.178

7.0 56 X 107° 2.79 0.161
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Figure 11 Finite element model of a tensile polyethylene
specimen with the material properties of Table III, show-
ing the contours of the maximum principal true strain af-
ter 12.6 s. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

specified in Table IV. Figure 6 shows that the stress—
deformation curve is now modeled more accurately.
The deformation field of Figure 12, obtained with
the same geometry and boundary conditions as the
two previous cases, exhibits the start of a neck, again
close to the edge flaw.

We have included the edge flaw in the models of
polyethylene to prove the point that, when we com-
pare models based on polyethylene with those based
on polycarbonate, the difference in the behavior is a
result entirely of the constitutive equation because
the geometries and boundary conditions are identi-
cal. However, we have also run the model with no
flaw, using Table IV parameters, and found that the
resulting strain fields are extremely similar; the load-
ing offset is the primary cause of the location of the
observed neck origin. The load—extension predictions
are also virtually identical, and the results are inde-
pendent of whether a large (0.8-mm) or small (1.6-
mm) offset is used. A quantitative comparison with
experimental strain fields is not possible because the
strains associated with the initial stages of necking
are not reproducible. In some cases, the neck devel-
ops symmetrically, but there are other cases in
which it begins on one side of the specimen, resem-
bling the prediction of Figure 12. It seems most
likely that this is the result of various degrees of off-
set in the original specimen alignment. The load-
extension curves and the shapes of the fully devel-
oped necks are, in contrast, satisfactorily reproduci-
ble.

As with polycarbonate, the rate of stress decay af-
ter the load peak is not well captured; in all cases in
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Figure 12

Two-process finite element model of a tensile
polyethylene specimen with the material properties of Table
IV, showing the contours of the maximum principal true
strain after 12.1 s. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Figure 6, the predicted rates of decrease are greater
than those observed. The Eyring parameters have
been derived from the peak loads, at which the ma-
terial is still at relatively small strain compared with
the strain in the neck. Strains here are much higher
than those in polycarbonate, and so the molecular
orientation effects in the neck may become signifi-
cant. In particular, Ward and Wilding™® showed that
the activation volume in polyethylene decreases with
increasing orientation, and this would have the effect
of decreasing the V; parameter and lowering the rate
of stress decay. This effect would not be captured in
our model, in which the parameters are constant.

Transitional behavior

On comparing the mechanical properties of the two
materials as specified in Table I for polycarbonate
and in Tables II-IV for polyethylene, we find that
there is a major difference between the stiffnesses of
the Gaussian components, as defined by the parame-
ter C. We believe that the relative stiffness of the
Gaussian and Eyring mechanisms is the factor that
governs whether the instability is in the form of a
neck or a shear band. It is therefore of interest to
attempt to observe the transition from one form of
instability to the other as the stiffness ratio is varied.
We have done this by taking the properties as
defined in Table I and varying C while keeping the
other parameters constant. As shown in Figure 13(a),
shear-banding behavior persists as C is lowered to a
value of 170 MPa, although there is some trace of
the beginnings of a neck around where the band ini-

TABLE IV
Model Parameters for Polyethylene: The Two-Process Model

Cx (MPa) Cy (MPa) Ax (7 Ay (s

Vix (MPa™ 1)

V,x (MPa™") Vs (MPa™) Vyy (MPa™)

9.0 2.13 56 X 107° 7.03 x 1071

6.24 0.36 12.1 0.70
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(a)

(h)

Figure 13 Contours of the maximum principal true strain
after 2.5 s. The material parameters are the same as those
in Table I, except that (a) C is 170 MPa (some of the band
has been replaced by necked material) and (b) C is 165
MPa (the band has almost entirely been replaced by
necked material). [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

tiates. The result obtained with a further decrease in
the value of C to 165 MPa is shown in Figure 13(b),
in which necking behavior now clearly dominates.
In this figure, the simulation has been allowed to
progress to a stage at which, in reality, the material
would be strain-hardening; because there is no strain
hardening incorporated into this model, which is
appropriate only for the initial stages of deformation,
strains are higher and the degree of off-axis displace-
ment is greater than would be realistic. However,
we have successfully modeled the transition from
banding to necking.

DISCUSSION AND CONCLUSIONS

A single constitutive equation, consisting of an Eyr-
ing process and a Gaussian network, can be used to
model successfully the formation of instabilities in
tensile specimens of both polycarbonate and polyeth-
ylene. This is significant as the geometrical form of
instability is radically different for the two materials,
being in the form of a shear band in polycarbonate

Journal of Applied Polymer Science DOI 10.1002/app
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and a symmetric neck in polyethylene. In both cases,
finite element models give good predictions of both
boundary forces and strain fields. The values used
for the mechanical parameters specifying the model
are comparable with those used by other workers in
similar contexts.

In the case of polycarbonate, the boundary condi-
tions applied to the model specimen have to be
selected with particular care for the shear band to be
predicted successfully. The single shear band that is
observed experimentally requires some degree of
asymmetry. This can be generated by a geometrical
flaw in the material, but we found that the flaw size
had to be unrealistically large if it was the sole
source of asymmetry. The inevitable asymmetry
under boundary conditions, which in practice results
from offset loading, had to be incorporated into the
model. The applied boundary conditions reflected
the geometry of the experimental loading system, in
which tensile grips rotate about pin joints. The same
conditions were used for the polyethylene simula-
tions.

The stiffness of the network with respect to that of
the Eyring process determines whether a shear band
or a neck is predicted. In the decomposition of the
deformation into elastic and plastic components
according to eq. (1), only the plastic part is governed
by the flow rule of eq. (5). Because it is this flow
rule that enables the existence of a shear band, it fol-
lows that a band (a feature of the total deformation)
will be observed only when the plastic component is
dominant. This will occur when the elastic mecha-
nism is relatively stiff.

The behavior of polyethylene is more accurately
portrayed with a two-process model with two Eyr-
ing processes and two Gaussian networks. The strain
predictions of necking rather than shear banding are
essentially unchanged in comparison with the sim-
pler model.

The authors thank Alan Duckett of the IRC in Polymer Sci-
ence and Technology, University of Leeds, United King-
dom, for useful and stimulating discussions.
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